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Even more interesting than the intricate organization of complex networks is the dynamical behavior of
systems underlain by such structures. Among the many types of dynamics, one particularly interesting category
involves the evolution of trails left by moving agents progressing through random walks and dilating processes
in a complex network. The emergence of trails is present in many dynamical process, such as pedestrian traffic,
information flow, and metabolic pathways. Important problems related to trails include the reconstruction of
the trail and the identification of its source, when complete knowledge of the trail is missing. In addition, the
following of trails in multiagent systems represents a particularly interesting situation related to pedestrian
dynamics and swarming intelligence. The present work addresses these three issues while taking into account
permanent and transient marks left in the visited nodes. Different topologies are considered for trail recon-
struction and trail source identification, including four complex network models and four real networks,
namely, the Internet, the U.S. airlines network, an email network, and the scientific collaboration network of
complex network researchers. Our results show that the topology of the network influences trail reconstruction,
source identification, and agent dynamics.
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I. INTRODUCTION

Complex networks have become one of the leading para-
digms in science thanks to their ability to represent and
model highly intricate structures �e.g., �1–4��. However, as a
growing number of works have shown �e.g., �2,3�� the dy-
namics of systems whose connectivity is defined by complex
networks is often even more complex and interesting than
the connectivity of the networks themselves. One particu-
larly interesting type of nonlinear dynamics involves the
evolution of trails left by moving agents during random
walks or dilation processes along the network . The term
“dilation” refers to the progressive visiting of neighboring
nodes after starting from one or more nodes. For instance,
starting from node i, at each subsequent time the neighbors
of i are visited, then their unvisited neighbors, and so on,
defining a hierarchical system of neighborhoods �e.g., �5–7��.
Although the dynamics is described as agents visiting net-
work sites, it can be considered also as the evolution of ac-
tivity in the nodes of the network, where each network edge
represents the possibility of activity propagation between the
corresponding nodes. Another important related problem in-
volves attempts to recover incomplete trails. In other words,
in cases in which only partial evidence is available to obser-
vation, it becomes important to try to infer the full set of
visited nodes.

The emergence of trails has been studied as representing
an interesting type of self-organizational system. Helbing et
al. �8� proposed a model of pedestrian motion in order to
explore the evolution of trails in urban green areas. Also,
trails have been considered in swarming intelligence analysis
�9,10�, not only as a means to understand animal behavior

�11�, but also as a source of insights for new optimization
and routing algorithms �12,13�. These works considered the
evolution of trails in regular grids. However, the communi-
cation structures where the trail can be defined are not ho-
mogeneous in many cases. Many systems, such as the Inter-
net �5�, social relationships �14�, the distribution of streets in
cities �15�, and the connections between airports �16�, are
defined by an irregular topology—more specifically, most of
these systems are represented by scale-free networks �4�.
Here, we study the influence of different topologies in trail
recovery, source identification, and agent dynamics.

The analysis of trails left in complex networks can have
many useful applications. For instance, in information net-
works the recovery of the trail left by a spreading virus on
the Internet can be useful to identify the source of contami-
nation and propose strategies for computer immunization.
Similarly, the identification of the origin of rumors, diseases,
fads, and opinion formation �17� is important to understand
human communication dynamics. Another relevant problem
is related to traffic improvement and security. In the former
case, identification of the covered trails by packages ex-
changed between computers can help the development of
optimal routing paths. In the latter, the source of terrorism
strategies and drug trafficking can be determined by analysis
of clues identified in social and airline networks. The analy-
sis of trails can also have useful applications in biology. For
instance, in ecology, trail analysis can be applied to quantify
the interference of human activity in animal behavior and to
identify a focus of pollution. In paleontology, the recovery of
the trails of animal displacement by fossil analysis can help
the understanding of diversification among species. In epide-
miology, the identification of disease source can help to stop
the spreading process as well as to devise effective preven-
tion strategies.

In order to properly represent trails occurring in complex
networks, we associate state variables with each node i, i
=1,2 , . . . ,N, of the network. The trail is then defined by
marking such variables along the corresponding dynamical
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process. Only trails generated by self-avoiding random walks
and dilations are considered in the current work; these are
characterized by the fact that a node is never visited more
than once. We restrict our attention to binary trails, charac-
terized by binary state variables.1 The types of trails can be
further classified by considering the marks to be permanent
or transient. In the latter case, the mark associated with a
node can be deleted after the visit. While many different
transient dynamics are possible, we restrict our attention to
the following two types: �i� Poissonian, where each mark has
a fixed probability of being removed after the visit; and �ii�
evanescent, where the only observable portion of the trail
corresponds to the node�s� being currently visited.

The current work addresses the problem of recovering
trails in complex networks and identifying their origin, while
considering permanent and transient binary marks in four
different network models, namely, the Erdős-Rényi, Watts-
Strogatz, Barabási-Albert, and Dorogovtsev-Mendes-
Samukhin models; and four real networks: the Internet at the
autonomous system level, the U.S. airlines network, an email
network from the University Rovira i Virgili, and the scien-
tific collaboration network of complex network researchers.
We also consider the analysis of agent propagation using the
four network models. The next sections start by presenting
the basic concepts in complex networks and trails and follow
by reporting the simulation results, with corresponding dis-
cussion.

II. BASIC CONCEPTS IN COMPLEX NETWORKS
AND TRAILS

An undirected complex network �or graph� G is defined as
G= �V ,Q�, where V is the set of N nodes and Q is the set of
E edges of the type �i , j�, indicating that nodes i and j are
bidirectionally connected. Such a network can be completely
represented in terms of its adjacency matrix K, such that the
presence of the edge �i , j� is indicated as K�i , j�=K�j , i�=1
�otherwise K�i , j�=K�j , i�=0�. The degree of a node i corre-
sponds to the number of edges connected to it, which can be
calculated as k�i�=� j=1

N K�i , j�. The clustering coefficient is
related to the presence of triangles �cycles of length 3� in the
network �18�. The clustering coefficient of a node i is given
by the ratio between the number of edges among the neigh-
bors of i and the maximum possible number of edges among
these neighbors; the clustering coefficient of the network is
the average of the clustering coefficient of its nodes.

This paper considers four theoretical network models and
four real complex networks. The network models are �a�
Erdős-Rényi �ER� �19�, �b� Watts-Strogatz �WS� �18�, �c�
Barabási-Albert �BA�, �1� and �d� Dorogovtsev-Mendes-
Samukhin �DMS� �20�. In the first model, networks are con-
structed by considering a constant probability � of connec-
tion between any pair of nodes; in the second, networks start

with a regular topology, whose nodes are connected in a ring
to a defined number � of neighbors in each direction, and
later the edges are rewired with a fixed probability; networks
of the third and fourth models are grown by starting with m0
nodes and progressively adding new nodes with m edges,
which are connected to the existing nodes with probability
proportional to their degree �e.g., �1��. The DMS model dif-
fers from the BA model by adding an initial attractiveness k0
to each node, independent of its degree. When k0=0, the
DMS model is similar to the BA model �20�. All simulations
considered in this work assume that the networks have the
same number of nodes N=1000 and average degree �k	
=2m=��N−1�=2�=4. The real networks considered in this
work are the Internet at the level of autonomous systems,2

the U.S. airlines �21�, the email network from the University
Rovira i Virgili �Tarragona� �22�, and the scientific collabo-
ration of complex network researchers.3

Trails are generated as subsets of the nodes V are visited
during the evolution of random walks or dilations through
the network. We assume that just one trail is allowed at any
time in a complex network. We consider only self-avoiding
random walks, in which no node is visited more than once.
At each node, the agent chooses a new node to be visited at
random among the not yet visited neighbors of the node. To
understand the dilation process, consider ��i�, the set of
neighbors of node i. Starting with i0, the initial node of the
propagation �origin�, all nodes in ��i0� are visited; after that,
for all j���i0�, the nodes in ��j� not yet visited are recur-
sively visited; this process is repeated for a given number of
neighborhood hierarchies �e.g., �5–7,23��; see Fig. 1.

In order to represent trails, we associate two binary state
variables v�i� and s�i� with each node i, which can take the
values 0 �not yet visited� or 1 �visited�. The state variables
v�i� indicate the real visits to each node but are available
only to the moving agents; the state variables s�i� are the
“marks” of the visits yet available for observation, providing
not necessarily complete information about the visits. The
structure of the network is assumed to be known to the ob-
server and possibly also to the moving agent�s�. Such a situ-
ation corresponds to many real problems. For instance, if the
trail is being defined as an exploring agent moves through
unknown territory, the agent may keep some visited places
marked with physical signs �e.g., flags or stones� which are
accessible to observers, while keeping a complete map of
visited sites available only to her/himself. Trails are here
classified as permanent or transient. In the case of permanent
trails, s�i�=v�i�, i.e., all visited nodes are known. In the tran-
sient type, the state variables s�i� of each node i can be reset
to zero after being visited. Transient trails can be further
subdivided into �i� Poissonian, characterized by the fact that
each visited node has a fixed probability � of not being ob-
served, i.e., for nodes with v�i�=1, s�i� is 1 with probability

1In other words, a node can be marked as either already visited �1�
or not �0�. Graded states, e.g., indicating the time of the visit, are
considered only on analysis of dynamical agent propagation in Sec.
VI.

2The data considered in our work are available at the website of
the National Laboratory of Applied Network Research �25�. We
used the data collected in February 1998.

3The scientific collaboration of complex network researchers was
compiled by Newman from the bibliographies of two review ar-
ticles on networks �2,3�.
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1−� and 0 with probability � �nodes with v�i�=0 always
have s�i�=0�; and �ii� evanescent, where only the last visited
nodes are accessible to the observer. Figure 2 shows a clas-
sification of the main types of trails considered in this work.

The real extension of a trail is defined as being equal to
the sum of the state variables v�i�. The observable extension
of a trail is equal to the sum of the state variables s�i�. Given
a trail, we can define the observation error as being equal to

� = �
i=1

N

�1 − �„v�i�,s�i�…� , �1�

where ��a ,b� is the Kronecker delta function, yielding 1
when a=b and zero otherwise. Note that this error measures
the incompleteness of the information provided to the ob-
server. It is also possible to normalize this error by dividing
it by N, so that 0���1; this normalization is not used in
this work.

It is assumed that the observer will try to recover the
original, complete, trail from its observation. In this case, the
observer applies some heuristic in order to obtain a recov-

ered trail specified by an additional set of state variables r�i�
�r�i�=1 if node i is in the recovered trail�. Such a heuristic
may take into account the overlap error between the observ-
able states s�i� and the recovered values r�i�, defined as

	 = �
i=1

N

�1 − �„s�i�,r�i�…� . �2�

Note that as the observer has no access to v�i�, the recovery
error has to be estimated using s�i�. The actual recovery er-
ror, which can be used to infer the quality of the recovery, is
given by


 = �
i=1

N

�1 − �„v�i�,r�i�…� . �3�

Figure 3 illustrates the three state variables related to each
network node and the respectively defined errors.

When using recovery heuristics based on the evaluation of
the overlap error, it may happen that two or more different
recovered trails yield the same overlap error. In this case, it is
interesting to consider two additional parameters in order to
quantify the quality of the recovery: �i� the number M of
estimated trajectories corresponding to the minimum overlap
error; and �ii� the fraction f of times that the correct source
can be found among the M recovered trails. When average
values of M and f are close to 1, it means that the recovery
strategy is precise.

III. PROBLEMS CONSIDERED

Although the problem of trail analysis in complex net-
works is potentially very rich and can be extended to many
possible interesting situations, for simplicity’s sake we re-
strict our interest to the three following cases.

Poissonian trails from random walks. Because the consid-
eration of permanent and evanescent trails left by random
walks is trivial,4 we concentrate our attention on the problem
of recovering Poissonian trails left by single moving agents
during random walks. Once such a trail is recovered, its
source can be estimated as corresponding to one of its two

4Permanent trails left by random walks require no recovery, while
their source should necessarily correspond to either of its two ex-
tremities. Evanescent trails defined by random walks are meaning-
less, as only the current position of the single agent is available to
the observer.

FIG. 1. Dilating trail with two levels in a simple network. The
origin of this two-hierarchy trail is the black node, whose immedi-
ate neighbors are marked in gray. The nodes with the crossed pat-
tern correspond to the neighbors of the neighbors of the source of
the trail. The corresponding evanescent trail would include only the
crossed nodes. A Poissonian version of this trail would imply a ratio
� of unmarked �and unobservable� nodes.

FIG. 2. Trails, including those defined by random walks and
dilations, can be subdivided as being permanent or transient. The
latter type can be further subdivided into Poissonian and
evanescent.

FIG. 3. The three state variables associated with each network
node i and the defined errors �, 	, and 
.
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extremities; we do not consider the problem of source iden-
tification for this kind of trail. The recovery error is used to
measure the quality of the reconstructed trail.

Poissonian trails from dilations. In this case, only a frac-
tion of the nodes visited by the dilating process is available
to the observer. Two problems are of interest here, namely,
recovering the trail and identifying its origin. To quantify the
quality of the recovery, we evaluate the average values of the
number of trails with minimal overlap error �M	 and the
fraction of correct source identifications �f	.

Evanescent trails from dilations. In this type of problem,
only the currently visited nodes are available to the observer,
who is requested to reconstruct the trail and infer its possible
origin. This corresponds to potentially the most challenging
of the considered situations. Note that this case too is subject
to random removal of marks, i.e., the values of s�i� are not
only of the evanescent type but also can be randomly
changed to 0. The results are evaluated by computing �M	
and �f	.

IV. STRATEGIES FOR RECOVERY AND SOURCE
IDENTIFICATION

Several heuristics can possibly be used for recovering a
trail from the information provided by K and s�i�. In this
work, we consider a strategy based on the topological prox-
imity on the network between nodes with s�i�=1 that are not
connected. In the case of trails left by random walks, the
following algorithm is used.

�1� Initialize a list r as being equal to s.
�2� For each node i with s�i�=1: �a� Identify the node j

with r�i�=1 which is connected to at most one other node
with r�i�=1 and is closest to i �in the sense of the shortest
topological path, but excluding shortest paths with length 0
or 1 in the network�; �b� obtain the list L of nodes linking i to
j through the corresponding shortest path �if more than one
shortest path exists, one of them is chosen at random�; and
�c� for each node k in L, make r�k�=1.

After all nodes with s�i�=1 have been considered, the
recovered trail will be given by the nodes with r�i�=1.

Figure 4 illustrates a simple Poissonian random walk trail,
where the black nodes are those in s. The original trail is
composed of the nodes in s plus the gray nodes. It can be
easily verified that the application of the above reconstruc-
tion heuristic will properly recover the original trail in this
particular case. More specifically, we would have the follow-
ing sequence of operations.

Step 1. Node 1 is connected to node 5 through the shortest
path �1, 2, 3, 5�.

Step 2.: Node 2 is connected to node 5 �no effect�.
Step 3. Node 5 is connected to node 2 �no effect�.
Step 4. Node 9 is connected to node 5 through the shortest

path �9, 8, 6, 5�.
However, if the dashed edge connecting nodes 9 and 10

were included into the network, a large recovery error would
have been obtained because the algorithm would link node 9
to node 1 or 2 and not to node 5.

A different strategy is used for recovery and source iden-
tification in the case of dilation trails, which involves repeat-
ing the dilation dynamics while starting from each of the
network nodes. The most likely recovered trails are those
corresponding to the smallest obtained overlap error. Note
that more than one trail may correspond to the smallest error.
Also, observe that the possible trail sources are simulta-
neously determined by this algorithm. Actually, it is an inter-
esting fact that complete recovery of the trail is automatically
guaranteed once the original source is properly identified.
This is an immediate consequence of the fact that the recov-
ery strategy involves the reproduction of the original dila-
tion, so that the original and obtained trails for the correct
source will necessarily be identical.

Some additional remarks are required in order to clarify
the reason why more than one trail can be identified as cor-
responding to the minimal overlap error in Poissonian dila-
tion trails. Figure 5 illustrates a simple network with two
trails extending through two hierarchies, one starting from
the source A and the other from B, which are respectively
identified by the vertical and horizontal patterns. Note that
some of the nodes are covered by both trails, being therefore
represented by the crossed pattern. Now, assume that the
original trail was left by A but that the Poissonian version
incorporated only the three nodes with thick border �i.e., all
the other nodes along this trail were deleted before presenta-
tion to the observer�. Because the three nodes are shared by
both trails, the same overlap error will be obtained by start-
ing at node A or B. It is expected that the higher the value of
�, the more ambiguous the source identification becomes.

When many possible recovered trails with the same over-
lap error are found, i.e., when M �1, the identification of the
source is ambiguous. To take this fact into account, in those

FIG. 4. Example of simple Poissonian trail in a network. The
black nodes correspond to s; the original trail included the black
and gray nodes.

FIG. 5. Simple illustration of the source of ambiguity in trail
source determination. See text for explanation.
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(a)

(b)

(c)

(d)

FIG. 6. Observation error �black squares� and recovery error
�white circles� obtained by using the recovery algorithm for Pois-
sonian trails from random walks in the �a� ER, �b� WS, �c� BA, and
�d� DMS network models.

(a)

(b)

(c)

(d)

FIG. 7. Average and standard deviation, in terms of �, of the
number M of detected trails corresponding to the minimal overlap
error with respect to Poissonian dilation trails obtained for ER �a�,
WS �b�, BA �c�, and DMS �d� network models.
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cases we consider that each of the possible sources is as good
as the other, and therefore can be used as the evaluated
source; therefore we make f =1/M.

V. SIMULATION RESULTS AND DISCUSSION

To evaluate the recovery strategies under different topolo-
gies, randomly generated trails are studied in the ER, WS,

(a)

(b)

(c)

(d)

FIG. 8. Average and standard deviation of the flag f indicating
that the correct source has been identified among the detected trails
with minimal overlap error 	 in the recovery of Poissonian dilation
trails for ER �a�, WS �b�, BA �c�, and DMS �d� network models.

(a)

(b)

(c)

(d)

FIG. 9. Average and standard deviation in terms of �, of the
number M of detected evanescent trails corresponding to the mini-
mal overlap error obtained for ER �a�, WS �b�, BA �c�, and DMS �d�
network models.
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(a)

(b)

(c)

(d)

FIG. 10. Average and standard deviation of the flag f indicating
that the correct source has been identified among the detected eva-
nescent trails with minimal overlap error 	 for ER �a�, WS �b�, BA
�c�, and DMS �d� network models.

(a)

(b)

(c)

(d)

FIG. 11. Observation �black squares� and recovery �white
circles� errors obtained by using the recovery algorithm for a Pois-
sonian trail from random walks, for �a� the Internet, �b� the U.S.
airlines, �c� the email network from the University Rovira i Virgili,
and �d� the scientific collaboration of complex network researchers.

ANALYZING TRAILS IN COMPLEX NETWORKS PHYSICAL REVIEW E 76, 046106 �2007�

046106-7



(a)

(b)

(c)

(d)

FIG. 12. Average and standard deviation, in terms of �, of the
number M of detected trails corresponding to the minimal overlap
error obtained in the case of Poissonian dilation trails for �a� the
Internet, �b� the U.S. airlines, �c� the email network from the Uni-
versity Rovira i Virgili, and �d� the scientific collaboration of com-
plex network researchers.

(a)

(b)

(c)

(d)

FIG. 13. Average and standard deviation of the flag f indicating
that the correct source has been identified among the detected Pois-
sonian trails with minimal overlap error 	 for �a� the Internet, �b�
the U.S. airlines, �c� the email network from the University Rovira
i Virgili, and �d� the scientific collaboration of complex network
researchers.
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BA, and DMS network models and the networks of the In-
ternet �autonomous system �AS��, U.S. airlines, email, and
scientific collaboration, as indicated previously. The follow-
ing sections present and discuss those results.

A. Network models

Each considered network model was formed from N
=1000 nodes and average degree �k	=4. All random walk
trails were Poissonian with real extent equal to 20 nodes and
�=0.1,0.2, . . . ,0.8. All dilation trails took place along two
hierarchies, while the corresponding Poissonian and evanes-
cent cases assumed �=0.1,0.2, . . . ,0.8. In order to provide
statistically significant results, each configuration �i.e., type
of network, trail, and �� was simulated 100 times. The rewir-
ing probability in the WS model is the same as in the ER
model, i.e., p= �k	 / �N−1�. The initial connectivity in DMS
network models is k0=5.

Figure 6 shows the average observation and recovery er-
rors, with respective standard deviations, obtained for the
Poissonian random walk trails in the four considered net-
work models. The figure indicates an almost linear increase
of the recovery error with �. Such a monotonic increase is
explained by the fact that the higher the value of �, the more
incomplete the observable states become. As the recovery of
trails with more gaps will necessarily imply more wrongly
recovered patches, the corresponding error therefore will in-
crease with �. Also, as can be seen by a comparison between
observation and recovery errors, the adopted recovery heu-
ristic allowed moderate results for all considered network
models, without significant differences among the models,
which suggests that this recovery strategy is independent of
the network topology.

Figure 7 gives the average and standard deviation of M
for Poissonian dilation trails corresponding to the minimal
overlap error 	 for the ER, WS, BA, and DMS networks. In
all of these models, the average and standard deviation val-
ues of M tend to increase with �, starting at �M	=1. This
effect is a consequence of the fact that the more sparse the
information about the real trail, the more likely it is to cover
the observable states s with dilations starting from different
nodes. Interestingly, the increase of �M	 is substantially more
accentuated for ER networks, and BA networks are the least
subject to source determination ambiguities.

For the Poissonian dilation trails, the average �f	 �and
standard deviation� of the flag f is given in terms of � in Fig.
8 for the ER, WS, BA, and DMS networks. It is clear from
these results that the average number of times, throughout
the realizations, in which the correct source is identified
among those trails corresponding to the minimal overlap er-
ror 	 tends to decrease with increasing �. This is a direct
consequence of the fact that higher values of � imply sub-
stantial distortions to the original trail, ultimately leading to
shifts in the identification of the correct source. The behavior
of �f	 is similar for the ER, BA, and DMS network models,
with a sharp decrease for ��0.3. For WS networks, on the
other hand, �f	 has a smooth decrease. The sources of the
trails are best identified for ER, BA, and DMS models when

�0.3. For higher values of �, the sources are best identified
for WS network models.

Finally, we turn our attention to transient dilation trails of
the evanescent category. Recall that in this type of trail only
the current position of the trail �i.e., its border� is available to
the observer. Figure 9 presents the average and standard de-
viation of M obtained, in terms of �, for the ER, WS, BA,
and DMS network models. The result is similar to the case of
Poissonian trails �Fig. 7�, with the recovery strategy having
the worst results for ER networks, and similar results among
the other models. But for the evanescent trails M grows more
gradually than for Poissonian trails.

Figure 10 shows the average and standard deviation of the
values of the flag f in terms of � obtained for the same
models. Again, the results are similar to those obtained for
the Poissonian trails �Fig. 8�, but with a more gradual de-
crease of f for the ER model.

Remarkably, though retaining less information about the
original trail than the Poissonian counterparts, the evanescent
trails tend to allow a similar identification of the source of
the trail and the original trail.

B. Real networks

We considered four different networks in our simulations,
namely: the Internet at the level of autonomous systems, the
U.S. airlines �21�, the email network from the University
Rovira i Virgili �Tarragona� �22�, and the scientific collabo-
ration of complex networks researchers. Table I presents
some information about these networks. All random walk
trails were Poissonian with real extent equal to 20 nodes and
all dilation trails took place along two hierarchies, with �
=0.1,0.2, . . . ,0.8. Figure 11 shows average recovery errors
obtained for the Poissonian random walk trails in the four
considered real networks. Again, as we observed for the net-
work models, the recovery error increases almost linearly
with �, being only slightly smaller than the observation error.
The adopted recovery method achieves slightly better results
for the U.S. airlines network than for the other networks.

Figure 12 gives the average and standard deviation of M
for trails corresponding to the minimal overlap error 	 for
Poissonian dilation trials in the considered real networks.
The value of �M	 tends to increase with � for all networks.
For the Internet, �M	 has two distinct behaviors: �i� for �
0.4 and ��0.6, �M	 increases slowly; �ii� for 0.4�
0.6, �M	 decreases; in the region �0.5, M has high stan-
dard deviations. In the case of the U.S. airlines and the sci-

TABLE I. Statistical measurements for the considered real net-
works. N is the number of nodes, �k	 is the average degree, and CC
is the average clustering coefficient.

Network N �k	 CC

Internet 3522 3.59 0.19

U.S. airlines network 332 12.81 0.62

Collaboration in science 1589 3.45 0.02

Email network 1133 19.24 0.19
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entific collaboration networks, �M	 has a similar behavior,
but has larger values than from the U.S. airlines. The small-
est values of �M	 are obtained for the email network. There-
fore, trails can be better recovered in this type of network,

which is an important discovery because it has implications
for the identification of the source of spreading of virus or
rumors, among other cases.

The average �f	 of the correct source identification flag
�and standard deviation� is given in terms of � in Fig. 13 for

(a)

(b)

(c)

(d)

FIG. 14. Average and standard deviation, in terms of �, of the
number M of detected evanescent trails corresponding to the mini-
mal overlap error obtained for �a� the Internet, �b� the U.S. airlines,
�c� the email network from the University Rovira i Virgili, and �d�
the scientific collaboration of complex network researchers.

(a)

(b)

(c)

(d)

FIG. 15. Average and standard deviation of the flag f indicating
that the correct source has been identified among the detected eva-
nescent trails with minimal overlap error 	 for �a� the Internet, �b�
the U.S. airlines, �c� the email network from the University Rovira
i Virgili, and �d� the scientific collaboration of complex network
researchers.
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the considered real networks. The source identification is
worst for the Internet.

For transient dilation trails of the evanescent category, the
results are shown in Fig. 14 �for M� and Fig. 15 �for f�. As
for the models, the results are close to those obtained con-
sidering Poissonian dilation trails, despite the fact that the
evanescent category provides less information for trail recov-
ery.

VI. MULTIAGENTS

We considered the dynamics of multiagents in trail evo-
lution using four complex network models: ER, WS, BA,
and DMS. Each considered network model is formed from
N=1000 nodes and average degree �k	=4. The process is
defined as follows: �i� the first agent leaves a gradient trail—
the current position has the strongest mark and the source the
weakest—by self-avoiding random walks, �ii� the path is
erased with a probability � �Poissonian trail as before�, and
�iii� the second agent tries to reach the target �the last vertex
of the trail� by following preferentially the strongest marks,
at each immediate neighborhood, left by the first agent.
When the second agent does not find any mark, it performs a
random walk until another mark is found. This process is
performed, for example, by ants in searching for food—the
first agent can represent an ant that leaves a trail of phero-
mone which will be followed by the second ant. The objec-
tive of our investigation is to determine the influence of the
topology in target identification efficiency, as well as pos-
sible overall trajectory minimization, by measuring the
length of the path covered by the second agent. All random
walk trails were Poissonian with real extent equal to 20
nodes and �=0.1,0.2, . . . ,0.8. Figure 16 presents the length
of the path covered by the second agent as a function of the
erasure rate �. As can be clearly seen, when ��0.5 the sec-
ond agent covers the smallest paths for the BA, WS, and
DMS network models, followed by the ER. This suggests
that the topology of the network is fundamental for trajectory
following. Indeed, the hubs present in BA and DMS network
models provide shortcuts through the network. Enhanced ef-
ficiency was also found for the WS network models, but the
high clustering coefficient was identified as being fundamen-
tal in this case. While the length of the path followed by
the second agent stays almost constant as � increases for
the ER network model, it increases in the other models. For
��0.5, the length of the path for the ER network model
reaches its smallest value. Therefore, when the trail is almost
complete, the BA, WS, and DMS topologies provide the
best performances, but when the trail is sparse, ER allows
the shortest paths. Thus, it was verified that the topology
strongly influences agent dynamics.

VII. CONCLUDING REMARKS

A great part of the interest in complex networks has
stemmed from their ability to represent and model intricate
natural and human-made structures ranging from the Internet
to protein interaction networks. There is a growing interest in
the study of dynamics in such systems �e.g., �2,3,24��.

(a)

(b)

(c)

(d)

FIG. 16. Average and standard deviation in terms of the length
of the path covered by the second agent obtained for ER �a�, WS
�b�, BA �c�, and DMS �d� network models. Each point is an average
of 500 realizations.
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Among the many types of interesting dynamics which can
occur on complex networks, we have the evolution of trails
left by moving agents during random walks and dilations. In
particular, given one of such �possibly incomplete� trails, im-
mediately implied problems involve the recovery of the full
trail and the identification of its possible source. Such prob-
lems are particularly important because they are directly re-
lated to a large number of practical and theoretical situations,
including fad and rumor spreading, epidemiology, explora-
tion of new territories, and transmission of messages in com-
munications, among many other possibilities.

The important problem of analyzing trails left in networks
by moving agents during random walks and dilations has
been formalized and investigated by using two heuristic al-
gorithms in the present paper. We considered four models of
complex networks, namely, the Erdős-Rényi, Barabási-
Albert, Watts-Strogatz, and Dorogovtsev-Mendes-Samukhin
models, and four different real networks: the Internet at the
level of autonomous systems, the U.S. airlines, the email
network from the University Rovira i Virgili �Tarragona�,
and the scientific collaboration of complex network research-
ers. Also, we considered two types of trail: permanent and
transient. Particular attention was given to trails with tran-
sient marks. In the case of random walk trails, we investi-
gated how incomplete Poissonian trails can be recovered by
using a shortest path approach. The recovery and identifica-
tion of the source of dilation trails was approached by repro-
ducing the dilating process for each of the network nodes
and comparing the trails obtained with the observable state
variables.

It has been shown through simulation that both such strat-
egies are potentially useful for trail reconstruction and source
identification. In addition, a series of interesting results and

trends have been identified. First, it was found that the short-
est path approach for recovery of trails left by random walks
provides similar results for all considered networks and net-
work models, which suggests that this strategy is indepen-
dent of the network topology. Second, for dilatation trails it
was found that the Poissonian and evanescent types of trail
allow similar efficiency in the identification of sources, de-
spite the fact that the latter trails incorporate less information
than the former.

The analysis of multiagents on networks showed that the
topology strongly influences the performance. When the trail
is almost complete, the Barabási-Albert, Watts-Strogatz, and
Dorogovtsev-Mendes-Samukhin network models provide the
best performance. On the other hand, when the information
about the trail is sparse, the final point of the trail is reached
faster for the Erdős-Rényi network model.

It is believed that the suggested methods and experimental
results have paved the way for important related work, in-
cluding investigation of the scaling of the effects and trends
identified in the present work to other network sizes, average
node degrees, and network models. At the same time, it
would be interesting to consider graded state variables, more
than a single trail occurring simultaneously in a network,
other types of random walk �e.g., preferential �24��, as well
as alternative recovery and source identification strategies.
One particularly promising future possibility regards the re-
covery of diffusive dynamics in complex networks.
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